The Band-Gap Modulation of Graphyne Nanoribbons by Edge Quantum Entrapment
نویسندگان
چکیده
Using ab initio calculation coupled with the bond-order-length-strength (BOLS) approximation, we investigate the configurations and electronic properties of (α, β)-graphyne nanoribbons (GYNRs) with armchair (AGYNRs) and zigzag (ZGYNRs) edges. Our investigation shows that the armchair-edged β-GYNRs and all α-GYNRs are semiconductors with suitable band-gaps, and that their band-gaps increase as the widths of nanoribbons decrease; on the other hand, zigzag-edged β-GYNRs appear to be zero-band-gap materials. Observation results suggest that (i) atomic undercoordination shortens and stiffens the C-C bond, which contributes to the Hamiltonian and hence widens the band-gap intrinsically; (ii) zigzag-edged β-GYNRs lack a band-gap due to the edge-undercoordinated atoms lacking the energy to open the β-graphyne gap; and (iii) the edge-undercoordination of atoms occurs during charge entrapment.
منابع مشابه
Graphene nanoribbon band-gap expansion: broken-bond-induced edge strain and quantum entrapment.
An edge-modified tight-binding (TB) approximation has been developed, enabling us to clarify the energetic origin of the width-dependent band gap (E(G)) expansion of the armchaired and the reconstructed zigzag-edged graphene nanoribbons with and without hydrogen termination. Consistency between the TB and the density-function theory calculations affirmed that: (i) the E(G) expansion originates ...
متن کاملEnergy Levels of InGaAs/GaAs Quantum Dot Lasers with Different Sizes
In this paper, we have studied the strain, band-edge, and energy levels of cubic InGaAs quantum dots (QDs) surrounded by GaAs. It is shown that overall strain value is larger in InGaAs-GaAs interfaces, as well as in smaller QDs. Also, it is proved that conduction and valence band-edges and electron-hole levels are size dependent; larger QD sizes appeared to result in the lower recombination...
متن کاملInvestigation of electron correlation effects in armchair silicene nanoribbons
In this study, the electronic structure of armchair silicene nanoribbons (ASiNRs) is investigated for various widths using first-principle calculations and the framework of the density functional theory. Electronic structure of ASiNRs shows a direct band gap which is decreased with increasing the nanoribbon's width, showing an oscillatory behavior. The effective Coulomb interaction between loca...
متن کاملZigzag graphene nanoribbons: bandgap and midgap state modulation.
We study zigzag graphene nanoribbons with periodic edge roughness and report significant band gap opening. Interestingly, such nanoribbons have a near-midgap state with a small band width. We extensively study the electronic structure and the electric-field modulation of the conduction/valence bands and the near-midgap state. We summarize the important electronic-structure features like the ban...
متن کاملHalogenated Graphdiyne and Graphyne Single Layers: A Systematic Study
Graphyne and graphdiyne families of flat carbon (sp2/sp) networks with high degrees of π-conjunction are attracting much attention due to their promising electronic, optical, and mechanical properties. In the present investigation we have studied the structural, mechanical, electrical and optical properties of halogenated graphdiyne and graphyne. The optical spectra of pure and halog...
متن کامل